Big Bang Theory

Come and share your knowledge and let others know about it, discuss any thing which is in your knowledge but might be unknown to others.

Big Bang Theory

Postby Subhash on Wed Mar 14, 2007 3:39 pm

The Big Bang theory is an effort to explain what happened at the very beginning of our universe. Discoveries in astronomy and physics have shown beyond a reasonable doubt that our universe did in fact have a beginning. Prior to that moment there was nothing; during and after that moment there was something: our universe. The big bang theory is an effort to explain what happened during and after that moment.

According to the Big Bang theory our universe emerged from a tremendously dense and hot state, universe sprang into existence as "singularity" around 13.7 billion years ago.
What is a "singularity" and where does it come from? Singularities are zones which defy our current understanding of physics. They are thought to exist at the core of "black holes." Black holes are areas of intense gravitational pressure. The pressure is thought to be so intense that finite matter is actually squished into infinite density. These zones of infinite density are called "singularities."
Our universe is thought to have begun as an infinitesimally small, infinitely hot, infinitely dense, something - a singularity. Where did it come from? We don't know. Why did it appear? We don't know. After its initial appearance, it apparently inflated (the "Big Bang"), expanded and cooled, going from very, very small and very, very hot, to the size and temperature of our current universe.

Image

In 1927, the Belgian priest Georges Lemaître was the first to propose that the universe began with the explosion of a primeval atom/'singularity'. The theory is based on the observations indicating the expansion of space in accord with the Robertson-Walker model of general relativity, as indicated by the Hubble redshift of distant galaxies taken together with the cosmological principle.

The term Big Bang is used both in a narrow sense to refer to a point in time when the observed expansion of the universe (Hubble's law) began — calculated to be 13.7 billion (1.37 × 1010) years ago (± 2%) — and in a more general sense to refer to the prevailing cosmological paradigm explaining the origin and expansion of the universe, as well as the composition of primordial matter through nucleosynthesis as predicted by the Alpher-Bethe-Gamow theory.

Big Bang Theory - Common Misconceptions
There are many misconceptions surrounding the Big Bang theory. For example, we tend to imagine a giant explosion. Experts however say that there was no explosion; there was (and continues to be) an expansion. Rather than imagining a balloon popping and releasing its contents, imagine a balloon expanding: an infinitesimally small balloon expanding to the size of our current universe.

Another misconception is that we tend to image the singularity as a little fireball appearing somewhere in space. According to the many experts however, space didn't exist prior to the Big Bang. The singularity didn't appear in space; rather, space began inside of the singularity. Prior to the singularity, nothing existed, not space, time, matter, or energy - nothing. So where and in what did the singularity appear if not in space? We don't know. We don't know where it came from, why it's here, or even where it is. All we really know is that we are inside of it and at one time it didn't exist and neither did we.

Big Bang Theory - Evidence for the Theory
What are the major evidences which support the Big Bang theory?

*First of all, we are reasonably certain that the universe had a beginning.
*Second, galaxies appear to be moving away from us at speeds proportional to their distance. This is called "Hubble's Law," named after Edwin Hubble (1889-1953) who discovered this phenomenon in 1929. This observation supports the expansion of the universe and suggests that the universe was once compacted.
*Third, if the universe was initially very, very hot as the Big Bang suggests, we should be able to find some remnant of this heat. In 1965, Radioastronomers Arno Penzias and Robert Wilson discovered a 2.725 degree Kelvin (-454.765 degree Fahrenheit, -270.425 degree Celsius) Cosmic Microwave Background radiation (CMB) which pervades the observable universe. This is thought to be the remnant which scientists were looking for. Penzias and Wilson shared in the 1978 Nobel Prize for Physics for their discovery.
*Finally, the abundance of the "light elements" Hydrogen and Helium found in the observable universe are thought to support the Big Bang model of origins.
"Friends4ever" Administrator & Designer

Image
User avatar
Subhash
Site Admin
Site Admin
 
Posts: 115
Joined: Mon Jan 15, 2007 12:00 am
Location: India

Return to Share your Knowledge

Who is online

Users browsing this forum: No registered users and 1 guest

cron